Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507423

RESUMO

Viruses are encapsidated mobile genetic elements that rely on host cells for replication. Several cytoplasmic RNA viruses synthesize proteins and/or RNAs that translocate to infected cell nuclei. However, the underlying mechanisms and role(s) of cytoplasmic-nuclear trafficking are unclear. We demonstrate that infection of small brown planthoppers with rice stripe virus (RSV), a negarnaviricot RNA virus, results in K63-linked polyubiquitylation of RSV's nonstructural protein 3 (NS3) at residue K127 by the RING ubiquitin ligase (E3) LsRING. In turn, ubiquitylation leads to NS3 trafficking from the cytoplasm to the nucleus, where NS3 regulates primary miRNA pri-miR-92 processing through manipulation of the microprocessor complex, resulting in accumulation of upregulated miRNA lst-miR-92. We show that lst-miR-92 regulates the expression of fibrillin 2, an extracellular matrix protein, thereby increasing RSV loads. Our results highlight the manipulation of intranuclear, cytoplasmic, and extracellular components by an RNA virus to promote its own replication in an insect vector.


Assuntos
Hemípteros , MicroRNAs , Oryza , Tenuivirus , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Tenuivirus/metabolismo , Regulação para Cima , Fibrilina-2/genética , Fibrilina-2/metabolismo , Replicação Viral , Oryza/genética , Doenças das Plantas
2.
Pestic Biochem Physiol ; 194: 105509, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532362

RESUMO

As an important biogenic amine in invertebrates and corresponding to the neurotransmitter norepinephrine in vertebrates, octopamine (OA) regulates diverse physiological and behavioral processes by binding to specific octopamine receptors (OARs) in invertebrates. At present, OARs have been identified and characterized in several insects. However, less is known about the OARs of Laodelphax striatellus, one of the most destructive pests in East Asian rice fields. In the present study, an α1-adrenergic-like OAR (LsOA1) from L. striatellus was cloned. LsOA1 has the typical characteristics of G-protein coupled receptors and is clustered with other insect homologs. The transcript level of LsOA1 varied in various stages and tissues, and was highly expressed at the egg stage and in the brain. Silencing of LsOA1 causes a reduction in vitellogenin (LsVg) and vitellogenin receptor (LsVgR) expression. Although LsOA1 interference did not affect the fecundity and survival of L. striatellus, the hatching rate of L. striatellus was significantly reduced, and the hatching period was prolonged. The decrease in the amount of honeydew excreted after silencing LsOA1 indicates that LsOA1 may be involved in regulating the feeding behavior of L. striatellus. In addition, the interference of LsOA1 significantly reduced the expression of capsid protein (CP) and viral RNA3 segment (RNA3) in rice stripe virus (RSV)-viruliferous L. striatellus, but did not affect the vertical transmission rate of RSV. The present study demonstrated that LsOA1 played a crucial role in the physiological and behavioral processes of L. striatellus, which will provide the basis for developing a new target gene for pest control.


Assuntos
Hemípteros , Oryza , Receptores de Amina Biogênica , Tenuivirus , Animais , Adrenérgicos/metabolismo , Hemípteros/fisiologia , Insetos , Receptores de Amina Biogênica/genética , Tenuivirus/metabolismo
3.
J Virol Methods ; 319: 114757, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37257758

RESUMO

Geminiviruses are a family of single-stranded DNA viruses that cause significant yield losses in crop production worldwide. Transcription start site (TSS) mapping is crucial in understanding the gene expression mechanisms of geminiviruses. However, this often requires costly and laborious experiments. Rice stripe virus (RSV) has a mechanism called cap-snatching, whereby it cleaves cellular mRNAs and uses the 5' cleavage product, a capped-RNA leader (CRL), as primers for transcription. Our previous work demonstrated that RSV snatches CRLs from geminiviral mRNAs in co-infected plants, providing a convenient and powerful approach to map the TSSs of geminiviruses. However, co-infections are not always feasible for all geminiviruses. In this study, we evaluated the use of in vitro cap-snatching of RSV for the same purpose, using tomato yellow leaf curl virus (TYLCV) as an example. We incubated RNA extracted from TYLCV-infected plants with purified RSV ribonucleoproteins in a reaction mixture that supports in vitro cap-snatching of RSV. The RSV mRNAs produced in the reaction were deep sequenced. The CRLs snatched by RSV allowed us to locate 28 TSSs in TYLCV. These results provide support for using RSV's in vitro cap-snatching to map geminiviral TSSs.


Assuntos
Geminiviridae , Tenuivirus , Tenuivirus/genética , Tenuivirus/metabolismo , Geminiviridae/genética , RNA Viral/genética , Sítio de Iniciação de Transcrição , RNA Mensageiro/genética
4.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Plant Sci ; 326: 111504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272547

RESUMO

Ammonium (NH4+) is a major inorganic nitrogen source for plants and also as a signal regulates plant growth and defense. Brassinosteroids (BRs) are a class of steroid hormones that control plant developmental and physiological processes through its signaling pathway. Rice is a kind of NH4+-preferring plant which responds to virus infection involving in the regulation of BR biosynthesis and signaling. However, the BR-mediated regulatory mechanisms in rice-virus interactions are not fully understood. In addition, it remains unknown whether there is a direct link between NH4+ and BRs in regulating rice response to virus. HDA703, a histone deacetylase and OsBZR1, a transcription factor, are two positive regulator of BR signaling and interact with each other. In this study, we show that rice plants grown with NH4+ as the sole N source have enhanced resistance to rice stripe virus (RSV), one of the most devastating viruses of rice, than those grown with NO3- as the sole N source. We also show that in contrast to NO3-, NH4+ does not affect BR biosynthesis but promotes BR signaling by upregulating the expression of HDA703 and promoting the accumulation of OsBZR1 in rice shoots. We further show that BR biosynthesis and signaling is required for rice defense against RSV and BR-mediated resistance to RSV attributes to activating HDA703/OsBZR1 module, then decreasing the expression of Ghd7, a direct target of HDA703/OsBZR1. Consistently, increase of the expression of HDA703 or decrease of the expression of Ghd7 enhances rice resistance to RSV. Together, our study reveals that activation of HDA703/OsBZR1-Ghd7 signaling cascade is an undescribed mechanism conferring BR-mediated RSV resistance and NH4+ protects rice against RSV by activating HDA703/OsBZR1-Ghd7-mediated BR signaling in rice.


Assuntos
Compostos de Amônio , Oryza , Tenuivirus , Tenuivirus/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos de Amônio/metabolismo , Brassinosteroides/metabolismo , Transdução de Sinais
6.
PLoS Pathog ; 18(7): e1010709, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35797383

RESUMO

MicroRNAs (miRNAs) play an important role in resisting virus infection in insects. Viruses are recognized by insect RNA interference systems, which generate virus-derived small RNAs (vsRNAs). To date, it is unclear whether viruses employ vsRNAs to regulate the expression of endogenous miRNAs. We previously found that miR-263a facilitated the proliferation of rice stripe virus (RSV) in the insect vector small brown planthopper. However, miR-263a was significantly downregulated by RSV. Here, we deciphered the regulatory mechanisms of RSV on miR-263a expression. The promoter region of miR-263a was characterized, and the transcription factor YY1 was found to negatively regulate the transcription of miR-263a. The nucleocapsid protein of RSV promoted the inhibitory effect of YY1 on miR-263a transcription by reducing the binding ability of RNA polymerase II to the promoter of miR-263a. Moreover, an RSV-derived small RNA, vsR-3397, downregulated miR-263a transcription by directly targeting the promoter region with partial sequence complementarity. The reduction in miR-263a suppressed RSV replication and was beneficial for maintaining a tolerable accumulation level of RSV in insect vectors. This dual regulation mechanism reflects an ingenious adaptation strategy of viruses to their insect vectors.


Assuntos
Hemípteros , MicroRNAs , Oryza , Tenuivirus , Animais , Hemípteros/metabolismo , Insetos Vetores , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/genética , RNA não Traduzido/metabolismo , Tenuivirus/metabolismo , Replicação Viral/genética
7.
J Agric Food Chem ; 70(27): 8469-8480, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771952

RESUMO

The rice stripe virus (RSV) is responsible for devastating effects in East Asian rice-producing areas. The disease-specific protein (SP) level in rice plants determines the severity of RSV symptoms. Isothermal titration calorimetry (ITC) and bimolecular fluorescence complementation (BiFC) assays confirmed the interaction between an R3H domain-containing host factor, OsR3H3, and RSV SP in vitro and in vivo. This study determined the crystal structure of SP at 1.71 Å. It is a monomer with a clear shallow groove to accommodate host factors. Docking OsR3H3 into the groove generates an SP/OsR3H3 complex, which provides insights into the protein-binding mechanism of SP. Furthermore, SP's protein-binding properties and model-defined recognition residues were assessed using mutagenesis, ITC, and BiFC assays. This study revealed the structure and preliminary protein interaction mechanisms of RSV SP, shedding light on the molecular mechanism underlying the development of RSV infection symptoms.


Assuntos
Oryza , Tenuivirus , Oryza/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Tenuivirus/genética , Tenuivirus/metabolismo
8.
PLoS Pathog ; 18(5): e1010548, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35560151

RESUMO

NF-Y transcription factors are known to play many diverse roles in the development and physiological responses of plants but little is known about their role in plant defense. Here, we demonstrate the negative roles of rice NF-YA family genes in antiviral defense against two different plant viruses, Rice stripe virus (RSV, Tenuivirus) and Southern rice black-streaked dwarf virus (SRBSDV, Fijivirus). RSV and SRBSDV both induced the expression of OsNF-YA family genes. Overexpression of OsNF-YAs enhanced rice susceptibility to virus infection, while OsNF-YAs RNAi mutants were more resistant. Transcriptome sequencing showed that the expression of jasmonic acid (JA)-related genes was significantly decreased in plants overexpressing OsNF-YA when they were infected by viruses. qRT-PCR and JA sensitivity assays confirmed that OsNF-YAs play negative roles in regulating the JA pathway. Further experiments showed that OsNF-YAs physically interact with JA signaling transcription factors OsMYC2/3 and interfere with JA signaling by dissociating the OsMYC2/3-OsMED25 complex, which inhibits the transcriptional activation activity of OsMYC2/3. Together, our results reveal that OsNF-YAs broadly inhibit plant antiviral defense by repressing JA signaling pathways, and provide new insight into how OsNF-YAs are directly associated with the JA pathway.


Assuntos
Oryza , Tenuivirus , Viroses , Antivirais/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Oxilipinas , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Tenuivirus/genética , Tenuivirus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Virol ; 96(7): e0214021, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35254088

RESUMO

Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwarf virus in its vector, the white-backed planthopper. This work implies the potential of flotillin 2 as a target for controlling the transmission of rice stripe disease. IMPORTANCE Plant viral diseases are a major threat to world agriculture. The transmission of 80% of plant viruses requires vector insects, and 54% of vector-borne plant viruses are persistent-circulative viruses, which must overcome the barriers of gut cells with the help of proteins on the cell surface. Here, we identified flotillin 2 as a membrane protein that mediates the cell entry of rice stripe virus in its vector insect, small brown planthopper. Flotillin 2 displays a prominent cellular membrane location in midgut cells and can specifically bind to virions. The loss of flotillin 2 impedes the entry of virions into the midgut cells of vector insects and substantially suppresses viral transmission to rice. Therefore, flotillin 2 may be a promising target gene for manipulation in vector insects to control the transmission of rice stripe disease and perhaps that of other rice virus diseases in the future.


Assuntos
Proteínas de Insetos , Proteínas de Membrana , Oryza , Vírus de Plantas , Tenuivirus , Animais , Hemípteros/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Tenuivirus/genética , Tenuivirus/metabolismo
10.
Arch Virol ; 167(3): 839-848, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35113245

RESUMO

Rice stripe tenuivirus (RSV) is mainly transmitted by the insect vector small brown planthopper (SBPH, Laodelphax striatellus) in a persistent-propagative manner. Virus transmission is dependent on the interplay between viral proteins and vector factors. Pc2, a nonstructural protein of RSV, plays an important role in virus transmission. However, the vector proteins that interact with Pc2 are unknown. In this study, we identified three SBPH proteins that interact with the N-terminal 381 amino acids of Pc2 (Pc2N) by using a yeast two-hybrid system (Y2H). The interaction of Pc2N with heat shock protein cognate 70 (HSC70) was studied further. HSC70 was verified to interact with RSV Pc2N by biomolecular fluorescence complementation and co-immunoprecipitation assays. HSC70 colocalized with RSV Pc2N in both Sf9 cells and the hemocytes of SBPHs. Inhibition of HSC70 expression via RNA interference reduced virus levels in hemolymph and salivary glands of SBPHs and resulted in decreased virus transmission efficiency. These data provide evidence that a vector protein, HSC70, is employed by RSV to facilitate virus accumulation in the hemolymph and thereby promote virus transmission. These findings are important for a better understanding of the interactions between plant viruses and insect vectors.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Resposta ao Choque Térmico , Insetos Vetores , Doenças das Plantas , Interferência de RNA , Tenuivirus/genética , Tenuivirus/metabolismo
11.
Protein Cell ; 13(5): 360-378, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675514

RESUMO

Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Núcleo Celular , Hemípteros/genética , Hemípteros/metabolismo , Insetos Vetores/genética , Insetos , Proteínas do Nucleocapsídeo/metabolismo , Doenças das Plantas , Tenuivirus/genética , Tenuivirus/metabolismo , Replicação Viral
12.
Genome Biol ; 22(1): 189, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167554

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes and has been implicated as a novel epigenetic marker that is involved in various biological processes. The pattern and functional dissection of m6A in the regulation of several major human viral diseases have already been reported. However, the patterns and functions of m6A distribution in plant disease bursting remain largely unknown. RESULTS: We analyse the high-quality m6A methylomes in rice plants infected with two devastating viruses. We find that the m6A methylation is mainly associated with genes that are not actively expressed in virus-infected rice plants. We also detect different m6A peak distributions on the same gene, which may contribute to different antiviral modes between rice stripe virus or rice black-stripe dwarf virus infection. Interestingly, we observe increased levels of m6A methylation in rice plant response to virus infection. Several antiviral pathway-related genes, such as RNA silencing-, resistance-, and fundamental antiviral phytohormone metabolic-related genes, are also m6A methylated. The level of m6A methylation is tightly associated with its relative expression levels. CONCLUSIONS: We revealed the dynamics of m6A modification during the interaction between rice and viruses, which may act as a main regulatory strategy in gene expression. Our investigations highlight the significance of m6A modifications in interactions between plant and viruses, especially in regulating the expression of genes involved in key pathways.


Assuntos
Adenina/análogos & derivados , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vírus de Plantas/patogenicidade , RNA de Plantas/genética , Tenuivirus/patogenicidade , Adenina/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Interações Hospedeiro-Patógeno/genética , Metilação , Anotação de Sequência Molecular , Oryza/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Plantas/metabolismo , Tenuivirus/crescimento & desenvolvimento , Tenuivirus/metabolismo
13.
PLoS Pathog ; 17(3): e1009370, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33662041

RESUMO

The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.


Assuntos
Nicotiana/virologia , Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Tenuivirus/metabolismo , Inativação Gênica , Oryza/genética , Oryza/metabolismo , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
14.
Insect Sci ; 28(4): 976-986, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32537916

RESUMO

Planthoppers are the most notorious rice pests, because they transmit various rice viruses in a persistent-propagative manner. Protein-protein interactions (PPIs) between virus and vector are crucial for virus transmission by vector insects. However, the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods. In this study, we applied DeNovo, a virus-host sequence-based PPI predictor, to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses. PPIs were identified at two different confidence thresholds, referred to as low and high modes. The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode. After eliminating the "one-too-many" redundant interacting information, the PPIs with unique planthopper proteins were reduced to 343-724 in the low mode and 758-1671 in the high mode. Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes, indicating that they are potential conserved vector factors essential for transmission of rice viruses. Ten PPIs between small brown planthopper and rice stripe virus (RSV) were verified using glutathione-S-transferase (GST)/His-pull down or co-immunoprecipitation assay. Five of the ten PPIs were proven positive, and three of the five SBPH proteins were confirmed to interact with RSV. The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects.


Assuntos
Hemípteros/virologia , Interações entre Hospedeiro e Microrganismos , Oryza/virologia , Vírus de Plantas , Animais , Hemípteros/genética , Hemípteros/metabolismo , Imunoprecipitação/métodos , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Oryza/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Mapas de Interação de Proteínas , Tenuivirus/genética , Tenuivirus/metabolismo
15.
PLoS Pathog ; 16(8): e1008801, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866183

RESUMO

Rice stripe virus (RSV) is one of the most destructive viral diseases affecting rice production. However, so far, only one RSV resistance gene has been cloned, the molecular mechanisms underlying host-RSV interaction are still poorly understood. Here, we show that increasing levels or signaling of brassinosteroids (BR) and jasmonic acid (JA) can significantly enhance the resistance against RSV. On the contrary, plants impaired in BR or JA signaling are more susceptible to RSV. Moreover, the enhancement of RSV resistance conferred by BR is impaired in OsMYC2 (a key positive regulator of JA response) knockout plants, suggesting that BR-mediated RSV resistance requires active JA pathway. In addition, we found that RSV infection suppresses the endogenous BR levels to increase the accumulation of OsGSK2, a key negative regulator of BR signaling. OsGSK2 physically interacts with OsMYC2, resulting in the degradation of OsMYC2 by phosphorylation and reduces JA-mediated defense to facilitate virus infection. These findings not only reveal a novel molecular mechanism mediating the crosstalk between BR and JA in response to virus infection and deepen our understanding about the interaction of virus and plants, but also suggest new effective means of breeding RSV resistant crops using genetic engineering.


Assuntos
Brassinosteroides/metabolismo , Ciclopentanos/metabolismo , Oryza , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Tenuivirus , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Tenuivirus/genética , Tenuivirus/metabolismo
16.
PLoS Pathog ; 16(8): e1008780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866188

RESUMO

Ubiquitin like protein 5 (UBL5) interacts with other proteins to regulate their function but differs from ubiquitin and other UBLs because it does not form covalent conjugates. Ubiquitin and most UBLs mediate the degradation of target proteins through the 26S proteasome but it is not known if UBL5 can also do that. Here we found that the UBL5s of rice and Nicotiana benthamiana interacted with rice stripe virus (RSV) p3 protein. Silencing of NbUBL5s in N. benthamiana facilitated RSV infection, while UBL5 overexpression conferred resistance to RSV in both N. benthamiana and rice. Further analysis showed that NbUBL5.1 impaired the function of p3 as a suppressor of silencing by degrading it through the 26S proteasome. NbUBL5.1 and OsUBL5 interacted with RPN10 and RPN13, the receptors of ubiquitin in the 26S proteasome. Furthermore, silencing of NbRPN10 or NbRPN13 compromised the degradation of p3 mediated by NbUBL5.1. Together, the results suggest that UBL5 mediates the degradation of RSV p3 protein through the 26S proteasome, a previously unreported plant defense strategy against RSV infection.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Tenuivirus/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Tenuivirus/genética , Nicotiana/genética , Ubiquitinas/genética , Proteínas Virais/genética
17.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817105

RESUMO

Most plant viruses require vector insects for transmission. Viral stability in the hemolymph of vector insects is a prerequisite for successful transmission of persistent plant viruses. However, knowledge of whether the proteolytic activation of prophenoloxidase (PPO) affects the stability of persistent plant viruses remains elusive. Here, we explored the interplay between rice stripe virus (RSV) and the PPO cascade of the vector small brown planthopper. Phenoloxidase (PO) activity was suppressed by RSV by approximately 60%. When the PPO cascade was activated, we found distinct melanization around RSV particles and serious damage to viral stability in the hemolymph. Viral suppression of PO activity was derived from obstruction of proteolytic cleavage of PPOs by binding of the viral nonstructural protein NS3. These results indicate that RSV attenuates the PPO response to ensure viral stability in the hemolymph of vector insects. Our research provides enlightening cues for controlling the transmission of vector-borne viruses.IMPORTANCE Large ratios of vector-borne plant viruses circulate in the hemolymph of their vector insects before entering the salivary glands to be transmitted to plants. The stability of virions in the hemolymph is vital in this process. Activation of the proteolytic prophenoloxidase (PPO) to produce active phenoloxidase (PO) is one of the major innate immune pathways in insect hemolymph. How a plant virus copes with the PPO immune reaction in its vector insect remains unclear. Here, we report that the PPO affects the stability of rice stripe virus (RSV), a notorious rice virus, in the hemolymph of a vector insect, the small brown planthopper. RSV suppresses PPO activation using viral nonstructural protein. Once the level of PO activity is elevated, RSV is melanized and eliminated from the hemolymph. Our work gives valuable clues for developing novel strategies for controlling the transmission of vector-borne plant viruses.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Hemípteros/virologia , Hemolinfa/virologia , Insetos Vetores/virologia , Tenuivirus/metabolismo , Animais , Hemípteros/enzimologia , Hemípteros/fisiologia , Doenças das Plantas/virologia , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
18.
Mol Plant ; 13(6): 836-850, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087369

RESUMO

The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales, causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Oryza/enzimologia , Oryza/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteólise , Tenuivirus/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Bases , Técnicas de Silenciamento de Genes , Inativação Gênica , Modelos Biológicos , Oryza/genética , Proteínas de Plantas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Tenuivirus/metabolismo , Ubiquitina/metabolismo , Proteínas Virais/metabolismo
19.
Virology ; 539: 114-120, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710910

RESUMO

Like their animal-infecting counterparts, plant bunyaviruses use capped RNA leaders cleaved from host cellular mRNAs to prime viral genome transcription in a process called cap-snatching, but in vivo systems to investigate the details of this process are lacking for them. Here, we report that Rice stripe tenuivirus (RSV) and Tomato spotted wilt tospovirus (TSWV) cleave capped RNA leaders from mRNAs transiently expressed by agroinfiltration, which makes it possible to artificially deliver defined cap donors to the two plant bunyaviruses with unprecedented convenience. With this system, some ideas regarding how plant bunyaviruses select and use capped RNA leaders can be tested easily. We were also able to obtain clear evidence that the capped RNA leaders selected by TSWV are generally longer than those by RSV. TSWV frequently uses the prime-and-realign mechanism in transcription primed by capped RNA leaders shorter than a certain length, like that has been demonstrated recently for RSV.


Assuntos
Bunyaviridae/genética , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Regiões 3' não Traduzidas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Pareamento de Bases , Bunyaviridae/metabolismo , Genoma Viral , Folhas de Planta/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Especificidade da Espécie , Tenuivirus/genética , Tenuivirus/metabolismo , Nicotiana/virologia , Tospovirus/genética , Tospovirus/metabolismo , Transcrição Gênica
20.
PLoS Pathog ; 15(3): e1007655, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921434

RESUMO

Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission.


Assuntos
Glicoproteínas/fisiologia , Hemípteros/genética , Tenuivirus/metabolismo , Animais , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Glicoproteínas/metabolismo , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Insetos , Doenças das Plantas/virologia , Tenuivirus/patogenicidade , Vírion , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA